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Introduction -- To maintain an up -to -date 
study of a time- dependent population, technique 
of sampling over successive occasions is used. 
In the present paper, the theory of sampling on 
successive occasions for a three -stage sampling 
design has been developed. In the case of three - 
stage successive sampling, there are about twelve 
sampling procedures available to alter the 

composition of the current sample. The estimates 
of population mean on the second occasion, the 
change between two consecutive occasions and the 
overall mean for two occasions are obtained for 
four selected procedures namely (5), (7), (8) 

and (11). The limited space did not permit the 
inclusion of-the results for the overall mean. 
2.1 Consider a population consisting of N 
primary stage units (PSU's) and each PSU consist- 
ing of M second -stage units (SSU's) and each SSU 
containing K third -stage units (TSU's). In the 
present study it is assumed that the population 
units are fixed, the variances on the two 

consecutive occasions are equal, the sample sizes 
remain same on each occasion and N, M and K are 
large so that the finite population correction 
factors at all three stages are negligible. The 
discussion is confined to two occasions only 
although the results obtained can be extended to 
more than two occasions. It is further assumed 
that the selection of the first sample, which 
consists of n PSU's, m SSU's within each of the 
n PSU's and k TSU's within each of the nm SSU's, 
is carried out by the method of simple random 
sampling without replacement and this applies to 

all the four sampling considered in this 
paper. 
2.2 Estimate of the Mean by Procedure (5). On 

the second occasion, retain all the PSU's of the 
first sample but retain only a fraction r of the 
SSU's with their samples of TSU's in each of the 
PSU retained and select afresh a fraction s of 

SSU's such that r + s = 1. Let denote the 

value of the response variable y for the t-th 
tertiary unit in the j -th second -stage unit 
within the i -th first -stage unit on the h -th 
occasion. A general linear unbiased estimator 
of 2 the population on the seconiloccasion may 
be written as y2(5) 
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In the above formulae, pb, and pt denote 

the true correlation coefficients among PSU means, 

SSU means and TSU's respectively and 

and Yhij. represent true mean of the Psu means 

true mean of the i -th PSU and the true mean of 
the j -th SSU in the i -th PSU on the h -th occasion 

(h = 1,2) respectively. The optimum weights ao 
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It may be easily shown that so 1/2. There are 

two special cases of interest here e.g., (i) s 

and (ii) s = 1. In either case, it follows from 

(2,2.2) that 
Var[y2(5)] + Thus it is 

clear 



that a complete retention or complete replacement 
of SSU's within the PSU's from the first sample 
on the second occasion does not help to improve 
on the estimate of the current population mean. 
2.3 Estimate of the Mean by Procedure (8) 

From the first sample retain only a fraction p of 
the PSU's along with their samples of SSU's and 
TSU's on the second occasion. Replace the 
remaining fraction q (such that p + q 1) of the 
PSU's by a fresh random selection of PSU's on the 
second occasion. 

A general linear unbiased estimator of 172 may 
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2.4 Estimate of the Mean by Procedure (7): 

Retain all the PSU's from the first sample. 
In each of the PSU's retained, further retain 
only a fraction r of the SSU's and select a frac- 

tion s of the new SSU's such that r + s = 1. In 

each of the matched SSU's, retain only a fraction 
t of TSU's and select fresh a fraction u of TSU's 
such that t + u = 1. 

A general linear unbiased estimator of 
may be 
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2.5 Estimate of the Mean by Procedure (11) 

Retain a fraction p of the PSU's from the 
first sample and select a fraction q (such that 
p + q = 1) of new PSU's on the second occasion. 
Further, retain a fraction r of the SSU's with 
their samples of TSU's in each of the PSU's 
retained and select anew the remaining fraction s 
of SSU's such that r + s = 1. 

A general linear unbiased estimator of '72 is 
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are the same as defined in section 2.2 and 2.3. 
2.6 Relative Efficiency 

In a design problem, it is important to 
study the relative performance of the different 
estimators. To study the relative efficiency of 
the four sampling procedures, it is necessary to 
have the same overall replacement fraction. 
Denoting the overall replacement fraction by q , 

it may be shown that for the Procedure (7)ßq 
* 

= 

s + u - s x u and for the Procedure (il), 

q* q + s - q x s. Let ÁM85 = Var [Y2(5)7/ 
2(5) 

Var Eÿ2(8)], RM87 Var Eÿ2(7)] /Var Eÿ2(8)] and 

RM811 = Var [y2(11) ] /Var N2(8)]. 

The relative efficiencies are computed for some 
selected values of the parameters and the design 
quantities. Limited space permits to present 
only a small fraction of the results in table 
2.1. In most cases, procedure (8) is more 
efficient than the other procedures. The effects 
of various quantities on the relative efficien- 
cies are discussed in details in the technical 
report. In tables 2.1 and 3.1, the symbols 

Sw2 /Sb2, St2 /Sb2, m = 16, k = 8, q = u = .5, 

s = .1 and q = .55. 

3.1 Estimate of the Change by Procedure (5) 
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- Y1) the change,may be written as 
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From (3.1.1) and (3.1.3) it is clear that for 

positive correlations, it is advantageous to 
retain a fraction of SSU's from the first sample 

to estimate the change. 
3.2 Estimate of Change by Procedure (8) 

A_general linear unbiased estimator of 

(Y2 - Y1) is 
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3.3 Estimate of the Change by Procedure (7) 

One possible linear unbiased estimator of 

the change may be of the form 
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3.4 Estimate of the Change by Procedure (11) 

One possible linear unbiased estimator of 
the change is 

A(11) = a[á'2(11) - - 1(11) + 2(11) - Y1(11)] 
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The variance of A(11) with optimum weights is 

similar meanings. These relative efficiencies 
are studied numerically and some of the results 
are presented in Table 3.1. The Procedure (7) 
provides the most efficient estimate of the 
change. 
4.1 Sample Allocation 

In most applications of sampling, cost is 
an important factor since the resources for 
sample surveys are always limited. Therefore, 
it is important to study the optimum allocation 
of the sample subject to a given cost. The 
optimum distribution of the sample to estimate 
the current population mean by Procedures (5) 

and (8) in two -stage successive sampling is 
considered here. It is assumed that the travel 
cost between units is unimportant. 
4.2 Allocation of the Sample in Procedure (5) 

A simple cost function for two occasions 
may be 

c(1) = c1n + c2nm; c(2) = c2nrm + c2 nsm 

where c1 is the cost of preparing frame and c2 

the cost of enumeration on the first occasion. 

c2 and c2 are the costs of enumeration on the 

matched and unmatched parts of the sample on the 
second occasion. The total cost for two occa- 
sion is 
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3.5 Relative Efficiency 
Let RC75 = Var [A(5)] /Var [A(7)], denote the 

relative efficiency of Procedure (7) with respect 
to Procedure (5). Symbols RC78 and RC711 have 
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4.3 Allocation of the Sample in Procedure (8) 
The total cost for two occasions in 

procedure (8) is 

c = (c1 +c1q)n + (c2 +c2p +c2q)nm (4.3.1) 

It is noted here that c1q is the additional cost 

of frame due to new selection of a fraction q of 
PSU's on the second occasion. The variance of 

for two -stage successive sampling is 
y2(8) 

2 

Var [Y2(8)] = ñ(Sb2 + SID x 
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Eliminating n from (4.3.1) and (4.3.2) we obtain 
2 

Var[y2(8)] = _[clcl 2(2c2 +c2 +c2)](Sb2 m) x 
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[(Sb 2 + Sm )2 + pw Sm )2] 

2 2 

[(Sb 2 )2 - t(PbSb2 + pw Sm 
(4.3.3) 

Now [Var (y2(8)] = 0 provides a sixth degree 

equation in m which is solved for the optimum m 
by the method of successive approximations. 
From (4.3.1), optimum n is obtained. 
4.4 Relative Efficiency 

Let REMC58 = Var [y2(8)] /Var [y2(5)] 

represent the relative efficiency of Procedure 
(5) with respect to Procedure (8). On the basis 
of numerical study (some of the results presented 
in Table 4.1) made, it is observed that the 
Procedure (5) is more efficient than the 
Procedure (8) to estimate the current population 
mean. 
Conclusions: It is observed from the extensive 
numerical study of the relative efficiencies 
that if the sampling is inexpensive and the 
precision of the estimates is of major interest, 
the sampling Procedure (8) is more efficient 
than the other procedures in most cases. How- 
ever, the gains of Procedure (8) over Procedure 
(5) are modest in most cases. If cost is taken 
into consideration, Procedure (5) is more 
efficient than Procedure (8) to estimate the 
current population mean. 
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Table 2.1 Values of RM85, RM87, RM811 

Pb Pw 

4)=.5, 4)=5, 4)=2 
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x y z x y z 
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.5 100 

.7 92 
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82 
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Table 3.1 Values of RC75, RC711, RC78 
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